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We present a new Neumann subproblema posteriorifinite-element procedure for
the efficient calculation of rigorous, constant-free, sharp lower and upper bounds for
linear and nonlinear functional outputs of the incompressible Navier–Stokes equa-
tions. We first formulate the bound procedure; we derive and discuss a bound error
expression; and we then demonstrate the capabilities of the method with numeri-
cal results obtained for natural convection problems. We also implement an optimal
adaptive refinement strategy based on a local elemental decomposition of the bound
gap. c© 2001 Academic Press

1. INTRODUCTION AND MOTIVATION

In typical design problems, engineers are rarely interested in the entire field solution;
only some selected characteristic metrics—or outputs—of the system are relevant. As an
example, we consider the problem of cooling electronic components by natural convection
of air in the enclosure represented in Fig. 1a, where the temperatureθ is fixed on the boundary
00, a heat fluxq is imposed on segments01,02, and03, and∂Ä\∪3

i=00i is insulated. In our
example, the Boussinesq approximation is applicable, and the flow field is described by the
incompressible Navier–Stokes equations coupled to a temperature equation. Given an input
heat fluxq, we wish to determine whether the mean temperature over01, s= 1

01

∫
01
θ ds,

is within an acceptable design intervalIdes= [slo, sup]. In practice, many different fluxesq
must be tested, so there is a premium on efficiency. Much more complex design questions
can also be addressed.
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FIG. 1. (a) DomainÄ. (b) “Optimistic” coarse mesh,TH . (c) “Conservative” fine mesh,Th = TH/6. (d) Coarse
meshTH/2.

In a classical simulation-based design approach, the output of interest is evaluated from
an approximate solution of the original problem. In the problem of cooling electronic
components, Fig. 1a, we first evaluate the output of interestsδ = S(uδ, pδ, θδ) from an
approximate field solution(uδ, pδ, θδ)—hereuδ is the velocity field,pδ is the pressure
field, θδ is the temperature field, andδ denotes the diameter of the discretization meshTδ.
We then verify whethersδ ∈ Ides, and the heat fluxq is accepted or rejected accordingly.
The shortcoming of the classical approach resides in the choice of the discretization mesh
Tδ. If one chooses an “optimistic” coarse meshTH , Fig. 1b, the calculation isinexpensive
but alsouncertainsince neithersH ∈ Ides impliess ∈ Ides nor sH 6∈ Ides impliess 6∈ Ides.
If, instead, one chooses a “conservative” sufficiently fine meshTh, Fig. 1c—this mesh is
obtained by dividing each triangle of meshTH into 36 self-similar triangles—thensh ≈ s
with reasonablecertainty, butsh is now veryexpensiveto compute.

This paper presents a new approach which offers great promise in reconciling these
conflicting requirements. We propose to construct a pair of output bound approximations,
the estimatorss+H ands−H , computed predominantly on the meshTH and with the following
attributes:

A1. As H → h, we haves+H → sh from above ands−H → sh from below∀H ≤ H∗.
HereH ∗ is an unknown threshold discretization parameter; a detailed discussion ofH∗ will
be given subsequently.

A2. If we define the half bound gap1H = 1
2(s
+
H − s−H ), then1H ≤ η|sH − sh| asH →

h, with η independent ofH . This property guarantees the optimal convergence rate and
sharpness of the bounds, provided the effectivity factorη is not too large.

A3. The bound gap1H admits elemental decomposition1H =
∑

TH∈TH
1TH , with

1TH ≥ 0 for all elementsTH in TH ; this property will be used for adaptive refinement.
A4. The work required to evaluates+H ands−H is substantially less than that necessary for

the computation ofsh, providedH ¿ h.
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Note that attribute A2 is important not only for efficiency but also for ensuring the “well-
posedness” of the estimator formulation whenH∗ <∞.

In our example, Fig. 1a, the bound-based design would proceed as follows. Given a
heat fluxq, we choose an initial meshTH , and we computes+H ands−H . Next, we define
Ib = [s−H , s

+
H ]; according to attribute A1 (providedH ≤ H∗), if Ib ∈ Ides, we acceptq; if

Ib ∈ R\Ides, we rejectq; otherwise, we use property A2—that is, we narrow the bound
gap by taking a finer mesh (a smallerH ), and we repeat the procedure. In the last case,
attribute A3 is important as it allows us to optimally refine the mesh through an adaptive
procedure. Attribute A4 ensures that the complete procedure is much less expensive than
directly computingsh.

We illustrate these concepts by fixing a design interval:Ides= [0.26, 0.28]. For a par-
ticular choice of the fluxq and of the parameters governing the problem, the outcome of
the bound procedure performed on the coarse meshTH (Fig. 1b) issh = 0.275± 8%, or
sh ∈ Ib = [0.253, 0.297]. According to our specification ofIdes, we cannot decide whether
to accept or reject the heat fluxq. Thus, we refine the mesh. The meshTH/2 is obtained
by dividing each triangle of meshTH into four triangles (by dividing each edge into two
edges); see Fig. 1d. For this new mesh, the bound procedure yieldssh = 0.276± 1.4%, or
sh ∈ Ib = [0.272, 0.280]. Since nowIb ∈ Ides, we can safely accept the fluxq. Note that,
in this example, we have not used attribute A3 which allows optimal adaptive refinement.
An example utilizing adaptivity will be given in Section 4.

The procedure is an extension of our recent general error-control strategy [8, 11, 13,
15, 17], and may be viewed as an implicit Aubin–Nitsche construction; for a review, see
[9]. In [14], an early application of the technique to the Stokes equations is presented. Our
method is indebted to, but considerably generalizes, earlier finite elementa posteriorierror-
estimation techniques in that it provides a quantitative constant-free bound, in contrast to
earlier explicit techniques [4], and the bounded quantity is the output of interest, in contrast
to earlier implicit techniques [2, 3, 7]. Some aspects of the method are also analogous to
certain domain decomposition techniques [6, 12].

The application of our general technique to the Navier–Stokes equation presents several
new challenges. The purpose of the present paper is (i) to give a detailed and complete
account of the bound algorithm, (ii) to derive and discuss a bound error expression, and (iii)
to demonstrate the attributes of the procedure with numerical examples. A complete and
rigorous numerical analysis of the method is relegated to a future paper.

The paper is organized as follows. Section 2 contains the formulation of the bound pro-
cedure. We start by formulating the finite-element discretization of the natural convection
problem. We next introduce some preliminary definitions, and we describe the bound algo-
rithm in detail. Finally, we derive a bound error expression. Section 3 presents numerical re-
sults for two natural convection problems and an implementation of an optimal adaptive
refinement strategy based on the bound procedure. Section 4 concludes the paper with a
review of the various attributes of the method. For the convenience of presentation, some
mathematical developments have been presented in the Appendixes.

2. BOUND PROCEDURE

This section is divided into four parts. We first introduce the equations governing the nat-
ural convection problem considered, and we formulate the finite-element approximation. To



404 MACHIELS, PERAIRE, AND PATERA

ease the subsequent discussion, we also recall or introduce the necessary function spaces,
finite-element spaces, and forms. In the second part, we complete our definitions by intro-
ducing the ingredients particular to the bound method, namely, the “broken” finite-element
spaces—which are characterized by relaxation of the continuity constraint of the finite-
element functions across edges of the coarse mesh—and the Taylor expansion and splitting
of the nonlinear forms introduced in the first part. In the third part, after the introduction of
the appropriate concepts and definitions, we detail and discuss the five steps of the bound
construction. Finally, in the last part, we discuss the bound error expression.

2.1. Problem Statement

Given a two-dimensional domainÄ ∈ R2, we consider a problem of natural convection
which is, in the Boussinesq approximation, described by the system of equations

− ∂

∂xj

(
∂ui

∂xj
+ ∂u j

∂xi

)
+ ∂(u j ui )

∂xj
+ ∂p

∂xi
= −βθ ĝi in Ä, (1)

∂ui

∂xi
= 0 inÄ, (2)

− 1

α

∂2θ

∂xj ∂xj
+ ∂(u j θ)

∂xj
= 0 inÄ, (3)

where the summation convention of repeated indices applies,u = (u1, u2) is the velocity
field, p is the pressure field,θ is the temperature field, and̂g= (ĝ1, ĝ2) is the unit vector
indicating the direction of gravity. The flow is governed by two nondimensional parameters:
the Prandtl numberα and the Grashof numberβ. We supplement Eqs. (1), (2), and (3) with
the boundary conditions

u|∂Ä = 0 and


θ = 0 on00,

1
α
∂θ
∂n = gN on0k, for k = 1, 2, . . . , K ,

∂θ
∂n = 0 on∂Ä\⋃K

k=00k,

(4)

where0k ⊂ ∂Ä, 0k ∩ 0l = ∅ whenk 6= l , and the functiongN :
⋃K

k=00k → R represents
the heat flux.

2.1.1. Variational formulation. Our point of departure for a finite-element approxima-
tion of Eqs. (1), (2), and (3) is a variational formulation. We first recall the definitions of
some function spaces and their associated norms and seminorms. For 1≤ p < +∞, we
define the spaces

L p(Ä) =
{
v : Ä→ R | v is measurable and

∫
Ä

|v|p dÄ < +∞
}

and their associated norm

‖v‖L p(Ä) =
(∫

Ä

|v|p dÄ

)1/p

.

We also define

L∞(Ä) = {v : Ä→ R | ess sup{|v(x)|; x ∈ Ä} < +∞}
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and the norm‖v‖∞ = ess sup{|v(x)|; x ∈ Ä}. Letα = (α1, α2) with α1 andα2 being non-
negative integers; we define

Dαv = ∂ |α|v
∂xα1

1 ∂xα2
2
,

where|α| = α1+ α2. The Sobolev spaceHk(Ä) (e.g., see [1]), wherek is a non-negative
integer, is the space

Hk(Ä) = {v ∈ L2(Ä) | Dαv ∈ L2(Ä), ∀|α| ≤ k}.

We will also use the spaces

Hk
0 (Ä) = {v ∈ Hk(Ä) | v|∂Ä = 0}.

We finally introduce the norms and seminorms associated with the spacesHk(Ä),

‖v‖Hk(Ä) =
∑
|α|≤k

∫
Ä

|Dαv|2 dÄ

1/2

, |v|Hk(Ä) =
∑
|α|=k

∫
Ä

|Dαv|2 dÄ

1/2

.

We now define the function spacesX = H1
0 (Ä)× H1

0 (Ä),M = L2(Ä),

Xθ = {v ∈ H1(Ä) | v|00 = 0
}
,

andY = X × M × Xθ . To facilitate the variational formulation of the problem, we define
the bilinear and trilinear forms

a : X × X → R, a(v,w) =
∫
Ä

(
∂vi

∂xj
+ ∂v j

∂xi

)
∂wi

∂xj
dÄ,

aθ : Xθ × Xθ → R, aθ (φ, ρ) = 1

α

∫
Ä

∂φ

∂xi

∂ρ

∂xi
dÄ,

b : X × M → R, b(v, r ) = −
∫
Ä

∂vi

∂xi
r dÄ,

c : X × X × X → R, c(v1, v2,w) = −
∫
Ä

(v1i v2 j )
∂wi

∂xj
dÄ,

cθ : Xθ × X × Xθ → R, cθ (φ, v, ρ) = −
∫
Ä

(φv j )
∂ρ

∂xj
dÄ,

d : Xθ × X → R, d(φ,w) = β
∫
Ä

φwi ĝi dÄ.

Finally, we introduce the “natural convection form,”

A((v,q, φ), (w, r, ρ)) = a(v,w)+ aθ (φ, ρ)+ b(v, r )+ b(w,q)

+ c(v, v,w)+ cθ (φ, v, ρ)+ d(φ,w)− 〈gN, ρ〉N, (5)
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where

〈gN, ρ〉N =
∑

0<k≤K

∫
0k

gNρ|0k d0

(we assumegN ∈ L2(∪k=1, . . . , K0k)). The variational formulation of Eqs. (1), (2), and
(3), with boundary conditions (4), then consists of finding(u, p, θ) ∈ Y such that

A((u, p, θ), (v,q, φ)) = 0, ∀(v,q, φ) ∈ Y. (6)

As indicated in the Introduction, we assume that we are not directly interested in the
complete field solution(u, p, θ), but that we wish to evaluate an output of interests=
S(u, p, θ). We assume that the formScan be expressed as

S(v,q, φ) = c0+ `(v,q, φ)+m(v, v), (7)

wherec0 ∈ R, ` : Y→ R is a bounded linear functional, andm : X × X→ R is a contin-
uous, symmetric, bilinear functional such that

m(v,w) ≤ C‖v‖L2(Ä)‖w‖L2(Ä),

with C > 0. The norm in the product spaceL2(Ä)× L2(Ä) is defined by‖v‖2L2(Ä)
=

‖v1‖2L2(Ä)
+ ‖v2‖2L2(Ä)

. In addition, since in this formulation the pressurep is defined only
to within a constant, we require that

`(0, 1, 0) = 0. (8)

2.1.2. Finite-element formulation.We will now define a finite-element approximation
of (6). We consider a (regular, uniform) triangulationTδ of the domainÄ; that is,Tδ is a set
of trianglesTδ such that

Ǟ = ∪Tδ∈Tδ T̄δ and Tδ ∩ T ′δ = ∅ if Tδ 6= T ′δ ,

whereĀ denotes the closure ofA ⊂ R2, andδ is the diameter of the triangulationTδ,

δ = max
Tδ∈Tδ

diam(Tδ), where diam(Tδ) = max
x,y∈Tδ
|x− y|.

For a given triangulationTδ, we will denote byTδ/2, Tδ/3, . . . the refinements ofTδ obtained
by dividing each triangle ofTδ into 22, 32, . . . self-similar triangles. In particular, we will
say thatTδ′ is a refinement ofTδ if there is an integern > 0 such thatTδ′ = Tδ/n.

In this work, we choose the Crouzeix–Raviart finite-element spaces for the velocity and
the pressure [5]; that is, the approximate velocityuδ is in Xδ and the approximate pressure
pδ is in Mδ, where

Xδ =
{

v ∈ X | vi |Tδ ∈ P2(Tδ)⊕ B3(Tδ), ∀Tδ ∈ Tδ
}
,

Mδ =
{

p ∈ L2(Ä) | p|Tδ ∈ P1(Tδ), ∀Tδ ∈ Tδ
}
.
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HerePp(Tδ) is the space of all polynomials of degree≤p defined onTδ, andB3(Tδ) denotes
the space of bubble functions of degree 3 onTδ. We use the standard quadratic elements for
the temperature field,θδ ∈ Xθ

δ , where

Xθ
δ =

{
φ ∈ Xθ |φ|Tδ ∈ P2(Tδ), ∀Tδ ∈ Tδ

}
.

Finally, we define the solution space as the product spaceYδ = Xδ × Mδ × Xθ
δ .

The finite-element method for Eqs. (1), (2), and (3) with the boundary conditions (4)
consists of the construction of an approximate solution(uδ, pδ, θδ) ∈ Yδ such that

A((uδ, pδ, θδ), (v,q, φ)) = 0, ∀(v,q, φ) ∈ Yδ.

We now assume that we are given two triangulations,TH , the coarse mesh, andTh,
the fine mesh, withTh = TH/n a refinement ofTH andh¿ H . Therefore, we haveYH ⊂
Yh, whereYH is the finite-element space associated with the triangulationTH , and Yh

is the finite-element space associated withTh. This inclusion, although not required for
the subsequent formulation of the bound method, follows immediately if we note that
the fine mesh is obtained by dividing each triangleTH ∈ TH into self-similar triangles
and, thus, the trace of the cubic bubble function on any edge of the fine mesh is at most
quadratic. The associated coarse-space and fine-space approximations,(uH , pH , φH ) and
(uh, ph, φh), exhibit complementary advantages and disadvantages. The fine-space solution,
(uh, ph, φh) ∈ Yh, which satisfies the discrete equations

A((uh, ph, θh), (v,q, φ)) = 0, ∀(v,q, φ) ∈ Yh, (9)

yields a very good approximation,sh = S(uh, ph, θh), to the exact outputs; nevertheless, the
computational effort required to obtain(uh, ph, θh)will typically be prohibitive. In contrast,
the coarse-space solution(uH , pH , θH ) ∈ YH , which satisfies the discrete equations

A((uH , pH , θH ), (v,q, φ)) = 0, ∀(v,q, φ) ∈ YH ,

can be obtained with relatively modest computational effort; nevertheless the fidelity of the
corresponding approximate output,sH = S(uH , pH , θH ), is no longer ensured.

2.2. Bounds Preliminaries

The formulation of the bound algorithm requires the definition of particular finite element
spaces, the “broken” spaces, which are obtained as extensions of the classical finite-element
spaces by relaxing the continuity of the finite-element basis functions across edges of the
coarse mesh. Moreover, due to the nonlinearity, noncoercivity, and nonsymmetry of the
problem, we must also expand the nonlinear formsA andS into other linear, bilinear, and
trilinear forms. We then further decompose some of these new forms into coercive—with
respect to divergence-free functions—and noncoercive parts and symmetric and antisym-
metric components.
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2.2.1. “Broken” spaces. We denote by0(TH ) the set of edgesγ of TH . We define the
“broken” finite-element spaces as

X̂H =
{

v ∈ L2(Ä)× L2(Ä) | vi |TH ∈ P2(TH )⊕ B3(TH ), ∀TH ∈ TH
}
,

X̂h =
{

v ∈ L2(Ä)× L2(Ä) | vi |TH ∈ H1(Th), ∀TH ∈ TH ;
vi |Th
∈ P2(Th)⊕ B3(Th), ∀Th ∈ Th

}
,

X̂θ
H =

{
φ ∈ L2(Ä) |φ|TH ∈ P2(TH ), ∀TH ∈ TH

}
,

X̂θ
h =

{
φ ∈ L2(Ä) |φ|TH ∈ H1(TH ), ∀TH ∈ TH ;φ|Th ∈ P2(Th), ∀Th ∈ Th

}
.

If ŶH = X̂H × MH × X̂θ
H andŶh = X̂h × Mh × X̂θ

h, we haveYH ⊂ ŶH andYh ⊂ Ŷh.
We also define the “hybrid flux” spaces

QH =
{

z ∈ L2(0(TH ))× L2(0(TH )) | zi |γ ∈ P4(γ ), ∀γ ∈ 0(TH )
}
,

Qθ
H =

{
z ∈ L2(0(TH )) | z|γ ∈ P4(γ ), ∀γ ∈ 0(TH ); z|γ = 0, ∀γ ∈ ∂Ä\00

}
.

The reason for using quartic polynomials(P4)will become apparent in the bound procedure.
(In fact,P2 polynomials would be sufficient.) We define the product spaceZH = QH × Qθ

H

and the formB : (Xh × Mh)× ZH → R,

B((v, θ), (z, zθ )) =
∑

γ∈0(TH )

∫
γ

(
[vi ]γ zi |γ + [θ ]γ zθ|γ

)
dγ,

where [v]γ denotes the jump inv acrossγ whenγ ∈ Ä and the trace ofv whenγ ∈ ∂Ä.
Note that we have the following equivalence condition:

YH =
{
(v,q, φ) ∈ ŶH | B((v, φ), (z, zθ )) = 0, ∀(z, zθ ) ∈ ZH

}
.

2.2.2. Form expansions.We define

E((ū, p̄, θ̄ ); (v,q, φ), (w, r, ρ)) = A((ū+ v, p̄+ q, θ̄ + φ), (w, r, ρ))
−A((ū, p̄, θ̄ ), (w, r, ρ)). (10)

SinceA((v,q, φ), (w, r, ρ)) is quadratic in(v, φ), we can expressE as

E((ū, p̄, θ̄ ); (v,q, φ), (w, r, ρ)) = E((ū, p̄, θ̄ ); (v,q, φ), (w, r, ρ))
+ F((v, φ), (v, φ), (w, ρ)), (11)

whereE is linear in(v,q, φ) and(w, r, ρ), andF is trilinear. The formE represents the
first variation of the natural convection form (5). We now proceed with the decomposition

E((ū, p̄, θ̄ ); (v,q, φ), (w, r, ρ)) = E0((v,q, φ), (w, r, ρ))+ E1((ū, θ̄ ); (v, φ), (w, ρ)),

where

E0((v,q, φ), (w, r, ρ)) = a(v,w)+ aθ (φ, ρ)+ b(v, r )+ b(w,q), (12)



A POSTERIORI FINITE-ELEMENT OUTPUT BOUNDS 409

and

E1((ū, θ̄ ); (v, φ), (w, ρ))= c(ū, v,w)+ c(v, ū,w)+ d(φ,w)+ cθ (θ̄ , v, ρ)+ cθ (φ, ū, ρ).

The formF is expressed as

F((v1, φ1), (v2, φ2), (w, ρ))

= 1

2

[
c(v1, v2,w)+ c(v2, v1,w)+ cθ (φ1, v2, ρ)+ cθ (φ2, v1, ρ)

]
,

and is then symmetric in(v1, φ1) and(v2, φ2). Note that, if we define the space of discretely
divergence-free functions

Vh = {v ∈ Xh | b(v,q) = 0, ∀q ∈ Mh},

thenE0 is positive definite with respect toVh × Mh × Xθ
h since

E0((v,q, φ), (v,q, φ)) = a(v, v)+ aθ (φ, φ) > 0,

for all v ∈ Vh,q ∈ Mh, andφ ∈ Xθ
h with (v, φ) 6= (0, 0).

Now, we expand the output, Eq. (7), as

S(ū+ v, p̄+ q, θ̄ + φ)− S(ū, p̄, θ̄ ) = L((ū, p̄, θ̄ ); (v,q, φ))+ M(v, v),

where

L((ū, p̄, θ̄ ); (v, q, φ)) = `(v,q, φ)+m(ū, v)+m(v, ū) (13)

andM(v, v) = m(v, v).
We then define the following primal residual:

Rpr((ū, p̄, θ̄ ); (v,q, φ)) = −A((ū, p̄, θ̄ ), (v,q, φ)). (14)

Finally, we define, for(ū, p̄, θ̄ ) ∈ Y, the linear dual problem: find the adjoint(ψ, λ, µ) ∈
Y solution of

E((ū, p̄, θ̄ ); (v,q, φ), (ψ, λ, µ)) = −L((ū, p̄, θ̄ ); (v,q, φ)), ∀(v,q, φ) ∈ Y.

We also define the generalized dual residual

Rdu((ū, p̄, θ̄ ); (ψ0, λ0, µ0); (ψ1, µ1); (v,q, φ)) = −L((ū, p̄, θ̄ ); (v,q, φ))
− E0((v,q, φ), (ψ0, λ0, µ0))− E1((ū, θ̄ ); (v, φ), (ψ1, µ1)). (15)

The importance of the dual problem and the associate dual residual will appear shortly.
Note that, if we definēe= uh − ū, ε̄ = ph − p̄, and ēθ = θh − θ̄ , then it follows, from
Eqs. (9), (10), and (14), that

E((ū, p̄, θ̄ ); (ē, ε̄, ēθ ), (v,q, φ)) = Rpr((ū, p̄, θ̄ ); (v,q, φ)), ∀(v,q, φ) ∈ Yh. (16)
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2.3. Algorithm

The bound algorithm proceeds in five steps. The computation is initiated by two global
solves on the coarse meshTH : one for the initial nonlinear (primal) problem, Step 1, and
one for the adjoint linear (dual) problem, Step 2. In Step 3, we compute the hybrid fluxes
which will serve as boundary conditions for the local Neumann subproblems in Step 4
after the elimination, by fine mesh projections, of the indefinite terms associated with the
incompressibility constraint. In Step 5 we compute the bounds using the “reconstructed
errors” obtaine as the solutions to the local subproblems in Step 4.

2.3.1. Step 1. We compute(uH , pH , θH ) ∈ YH as the solution of theprimal problem

A((uH , pH , θH ), (v,q, φ)) = 0, ∀(v,q, φ) ∈ YH .

In practice, we find(uH , pH , θH ) = (uk
H , pk

H , θ
k
H ) using Newton iteration, which is conve-

niently expressed as follows:

1. Select an initial guess(u0
H , p0

H , θ
0
H ) ∈ YH and setk = 0.

2. Find(vH ,qH , φH ) ∈ YH such that

E
((

uk
H , pk

H , θ
k
H

); (vH ,qH , φH ), (w, r, ρ)
)

= Rpr
((

uk
H , pk

H , θ
k
H

); (w, r, ρ)), ∀(w, r, ρ) ∈ YH .

Note that the solvability of the divergence-free constraint system is ensured by the homo-
geneous Dirichlet boundary condition.

3. Setk = k+ 1 and(uk
H , pk

H , θ
k
H ) = (uk−1

H , pk−1
H , θk−1

H )+ (vH ,qH , φH ); then go to 1
or stop, according to an appropriate stopping criterion.

2.3.2. Step 2. We compute the adjoint(ψH , λH , µH ) ∈ YH as the solution of the fol-
lowing dualproblem:

E((uH , pH , θH ); (v,q, φ), (ψH , λH , µH ))

= −L((uH , pH , θH ); (v,q, φ)), ∀(v,q, φ) ∈ YH . (17)

Again, the solvability of the constraint system is ensured by the homogeneous Dirichlet
boundary condition and the condition

L((uH , pH , θH ); (0, 1, 0)) = 0,

which follows from our definition of the output, Eq. (8), and from Eq. (13).

2.3.3. Step 3. We compute the primal and dual hybrid fluxes,(z, zθ )pr ∈ ZH and
(z, zθ )du ∈ ZH , which satisfy the equations

B((v, φ), (z, zθ )pr) = Rpr((uH , pH , θH ); (v,q, φ)), ∀(v,q, φ) ∈ ŶH (18)

and

B((v, φ), (z, zθ )du) = Rdu((uH , pH , θH ); (ψH , λH , µH ); (ψH , µH ); (v,q, φ)),
∀(v,q, φ) ∈ ŶH . (19)
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To find a suitable solution of Eq. (18), we first form the approximation,(z0, zθ0)
pr ∈ ZH ,

zpr
0i |γ = −

1

2

(
τ

pr
i j |γn+γ j − τ pr

i j |γn−γ j

)
,

zθ,pr
0 | γ = −

1

2

(
τ
θ,pr
j |γ n+γ j − τ θ,pr

j |γ n−γ j

)
,

wheren+γ (respectivelyn−γ ) denote the outward normal from the element on the arbitrarily
chosen “positive” (respectively “negative”) side of the edgeγ , and

τ
pr
i j =

(
∂uHi

∂xj
+ ∂uH j

∂xi

)
− pHδi j − uHi uH j ,

τ
θ,pr
j = 1

α

∂θH

∂xj
− uH j θH .

Note that, sinceuHi |γ ∈ P2(γ ), the approximation space for the hybrid fluxes includes
quartic polynomials,P4(γ ), to correctly representzpr

0i |γ andzθ,pr
0|γ . An alternative approach is

to interpolate the quartic term ontoP2, and thereby use onlyP2 hybrid fluxes. For(z0, zθ0)
du,

we obtain similar expressions,

τ du
i, j =

(
∂ψHi

∂xj
+ ∂ψH j

∂xi

)
− λHδi j ,

τ
θ,du
j = 1

α

∂µH

∂xj
.

Now, to satisfy Eqs. (18) and (19), we correct these initial approximations as follows,

(z, zθ )pr = (z0, z
θ
0

)pr+ (zl , z
θ
l

)pr+ (zq, z
θ
q

)pr
,

(z, zθ )du = (z0, z
θ
0

)du+ (zl , z
θ
l

)du+ (zq, z
θ
q

)du
,

where(zl , zθl )
pr and(zl , zθl )

duareP1 corrections, and(zq, zθq)
pr and(zq, zθq)areP2 corrections.

To obtain these corrections, we adapt a procedure developed in the context of energy-norm
implicit Neumann subproblem indicators [2, 7, 10].

2.3.4. Step 4. We compute the “incompressible local projections”: (ũH , p̃H , θ̃ H ) ∈ Yh

for the primal problem and(ψ̃H , λ̃H , µ̃H ) ∈ Yh for the dual problem. These projections are
constructed to satisfy the following equations on the fine mesh,

b(ũH ,q) = 0, ∀q ∈ Mh, (20)

b(ψ̃H ,q) = −L((uH , pH , θH ); (0,q, 0)), ∀q ∈ Mh, (21)

which eliminate the indefinite terms associated with the incompressibility constraint. We
chooseθ̃ H = θH , and, to satisfy Eq. (20), we write(ũH , p̃H ) = (uH , pH )+ (∆h, δh),
where, for allTH ∈ TH , we compute(∆h|TH , δh|TH ) ∈ XTH × MTH as the solution of

aTH

(
∆h|TH , v

)+ bTH

(
v, δh|TH

) = 0, ∀v ∈ XTH ,

bTH

(
∆h|TH ,q

) = −b
(
uH |TH ,q

)
, ∀q ∈ MTH ,
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with

aTH (v,w) =
∫

TH

∂vi

∂xj

∂wi

∂xj
dÄ, bTH (v, r ) = −

∫
TH

∂vi

∂xi
r dÄ,

and

XTH =
{

v ∈ H1
0 (TH )× H1

0 (TH ) | vi |Th ∈ P2(Th)⊕ B3(Th), ∀Th ∈ Th
}
,

MTH =
{

p ∈ L2(TH ) | p|Th ∈ P1(Th), ∀Th ∈ Th
}
.

This problem is solvable sinceb(uH |TH , 1) = b(uH , 1|TH ) = 0 for all TH ∈ TH , thanks to
the discontinuous pressure space.

Similarly, we choose ˜µH =µH and, to satisfy Eq. (21), we write(ψ̃H , µ̃H )=(ψH , µH )+
(∆h, δh), where, for allTH ∈ TH , we compute(∆h|TH , δh|TH ) ∈ XTH × MTH as the solution
of

aTH

(
∆h|TH , v

)+ bTH

(
v, δh|TH

) = 0, ∀v ∈ XTH ,

bTH

(
∆h|TH ,q

) = −b
(
ψH |TH

,q
)− L((vH , pH , θH ); (0,q, 0)), ∀q ∈ MTH .

These equations form a solvable system since, from Eq. (17),

b
(
ψH , 1|TH

) = −L((uH , pH , θH ); (0, 1|TH , 0)).

A priori estimates for the projections̃uH andψ̃H are derived in Appendix 1.
We now compute the primal and dual “reconstructed errors,”(ê, ε̂, êθ )pr ∈ Ŷh and

(ê, ε̂, êθ )du ∈ Ŷh, which satisfy the following equations:

2E0((ê, ε̂, êθ )pr, (v,q, φ)) = Rpr((ũH , p̃H , θ̃ H ); (v,q, φ))
− B((v, φ), (z, zθ )pr), ∀(v,q, φ) ∈ Ŷh, (22)

and

2E0((ê, ε̂, êθ )du, (v,q, φ)) = Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (v,q, φ))
− B((v, φ), (z, zθ )du), ∀(v,q, φ) ∈ Ŷh. (23)

According to our definition of the spacêYh, Eqs. (22) and (23) correspond to local (ele-
mental) decoupled Neumann problems; the solvability of these subproblems is discussed in
Appendix 2. Note that both the incompressible projection and the Neumann subproblems
are local and linear and, therefore, inexpensive to compute compared to the global fine mesh
problem, Eq. (9). This issue is further discussed in Section 4.

2.3.5. Step 5. Finally, we compute the bounds,s±H , according to

s±H = S(ũH , p̃H , θ̃ H )−Rpr((ũH , p̃H , θ̃ H ); (ψ̃H , µ̃H , λ̃H ))

± κuE0((ê±, ε̂±, 0), (ê±, ε̂±, 0))± κθE0((0, 0, êθ±), (0, 0, êθ±)), (24)

where

(ê±, ε̂±, êθ,±) = (ê, ε̂, êθ )pr∓ 1

κu
(ê, ε̂, 0)du∓ 1

κθ
(0, 0, êθ )du. (25)
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In this expression,κu andκθ are two strictly positive real number. The choice of these
parameters will affect the half bound gap

1H ≡ 1

2
(S+H − S−H )

= κuE0((ê, ε̂, 0)pr, (ê, ε̂, 0)pr)+ 1

κu
E0((ê, ε̂, 0)du, (ê, ε̂, 0)du)

+ κθE0((0, 0, êθ )pr, (0, 0, êθ )pr)+ 1

κθ
E0((0, 0, êθ )du, (0, 0, êθ )du).

Since(ê, ε̂, êθ )pr and(ê, ε̂, êθ )du do not depend on the choice ofκu andκθ , we can readily
find κu andκθ that minimize the bound gap, and hence render the lower and upper bound
as sharp as possible. We find

κu =
√

E0((ê, ε̂, 0)du, (ê, ε̂, 0)du)

E0((ê, ε̂, 0)pr, (ê, ε̂, 0)pr)
,

κθ =
√

E0((0, 0, êθ )du, (0, 0, êθ )du

E0((0, 0, êθ )pr, (0, 0, êθ )pr)
.

2.4. Bounding Properties

If we define the errors̃e= uh − ũH , ε̃ = ph − p̃H , andẽθ = θh − θ̃ H , we can derive the
bound error expression

s±H = sh ± D± + I ±, (26)

where

D± = κuF0(ẽ− ê±, ε̃ − ε̂±, 0)+ κθF0(0, 0, ẽθ − êθ,±),

with F0(v,q, φ) = E0((v,q, φ), (v,q, φ)). Recall thatsh = S(uh, ph, θh) is the fine mesh
(truth) output. The derivation of the bound error expression and the definition ofI ± are
given in Appendix 3.

We now show thatD± ≥ 0. We haveF0(0, 0, ẽθ − êθ±) ≥ 0 since, for allφ ∈ Xθ
h,

F0(0, 0, φ) = aθ (φ, φ) ≥ 0. Moreover, using the definition ofE0, Eq. (12), we can write

F0(ẽ− ê±, ε̃ − ε̂±, 0) = a(ẽ− ê±, ẽ− ê±)+ 2b(ẽ− ê±, ε̃ − ε̂±).

For allq ∈ Mh, we have, from (22) and (23), taking (v, q, φ) = (0, q, 0),

2κub(ê±,q) = −κub(ũH ,q)± [b(ψ̃H ,q)+ L((uH , pH , θH ); (0,q, 0))],

and, by virtue of Eqs. (20) and (21), we find that 2κub(ê±,q) = 0 andb(ẽ,q) = b(uh −
ũH ,q) = 0, ∀q ∈ Mh; therefore,

F0(ẽ− ê±, ε̃ − ε̂±, 0) = a(ẽ− ê±, ẽ− ê±) ≥ 0.
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We now examine the bound error expression, Eq. (26), and we see that the upper bound
(respectively, the lower bound) departs fromsh, by a positive (respectively negative) definite
contributionD+ (respectivelyD−) and an indefinite contributionI + (respectivelyI −). The
essential point is thatD± involves gradients only and is expected to converge at best like
H4 [10]. More precisely, we assume that there is a positive constant,CD > 0, such that
CD H4 ≤ D±—a variant of the method, based on a hypothesis easier to verify, is introduced
in [16]. As argued in Appendix 4, the indefinite contributionI ± involves only weaker norms
and converges likeH5: there exists a positive constantCI such thatI ± ≤ CI H5. Therefore,
if we define H∗ = CD/CI , according to Eq. (26), we obtain bounds for allH ≤ H∗.
The numerical examples presented hereafter will show that in practice bounds are always
obtained provided the mesh even barely resolves the flow. A similar argument has been used
successfully in earlier applications of the bound method to a variety of other noncoercive
or nonlinear problems [8, 11]. This issue will be further discussed in Section 4.

3. NUMERICAL EXAMPLES

We first present numerical results for natural convection in a square domain. The problem
is defined by Eqs. (1), (2), and (3), the geometry of the problem is shown in Fig. 2a, and the
boundary conditions areu|∂Ä = 0, θ = 0 on00,

∂θ
∂n = 1 on0I , and ∂θ

∂n = 0 otherwise. The
Prandtl number and the Grashof number areα = 1 andβ = 30,000, respectively. For this
choice of parameters, the Nusselt number is Nu= 2.49 (Nu−1 = 1

|0I |
∫
0I
θh d0, computed

with the fine mesh solution); for a pure conduction problem in this geometry, Nu= 1, and

FIG. 2. (a) Domain and coarse mesh,TH0. (b) Fine “truth” mesh,Th. (c) Streamlines. (d) Isotherms.
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thus Nu= 2.49 indicates the existence of velocity and thermal boundary layers near0I and
00. The elements of the coarsest mesh,TH0, are chosen so that the diameter of the mesh,
H0, is approximately the size of the thickness of the boundary layers. Figures 2b, 2c, and
2d represent the fine meshTh, the streamlines, and the isotherms obtained on the fine mesh,
respectively.

Figures 3a and 3b show the convergence of the bounds for the nonlinear output,

S1(u, p, θ) =
∫
Ä

|u|2 dÄ,

corresponding to the kinetic energy of the flow. In Fig. 3a, we have represented the
normalized lower and upper bounds,s+H/sh ands−H/sh, and the normalized coarse mesh out-
put,sH/sh, for different meshesTH . The mesh diameters vary fromH = H0 to H = H0/6;
Th = TH0/6 is the fine mesh. For this problem, bounds are obtained on all the meshes
considered. Figure 3b demonstrates that the convergence rate of the bound gap is optimal,
O(H4); the measured effectivity factorη, defined asη = 1H/|sh − sH |, is 7.3≤ η ≤ 7.7.

FIG. 3. Convergence of the (normalized) bounds s±
H/sh, for (a) the kinetic energy,S1, and (c) the mean

temperature on the heated boundary,S2; (b) and (d) show the convergence of the bound gap,1H , for S1 andS2,
respectively.
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Similar results are obtained for the output

S2(u, p, θ) = 1

|0I |
∫
0 I
θ d0.

Figures 3c and 3d show the convergence of the bounds and of the bound gap; again optimality
is achieved. For this output the effectivity factor is 3.6≤ η ≤ 5.

We next present results obtained for the model problem defined by Eqs. (1), (2) and (3),
the boundary conditions (4), and the domain represented in Fig. 1a. The output of interest
is

S(u, p, θ) = 1

|01|
∫
01

θ d0.

For this case the (nondimensional) heat flux isq = 1, and the Prandtl and Grashof numbers
areα = 1 andβ = 50,000; the resulting streamlines are shown in Fig. 4a.

Since the cost of computing the bounds is essentially a function of the number of ele-
mentsTH inTH , it is desirable to construct optimized triangulations that maximize the bound
accuracy (minimize the bound gap) for a given number of degrees of freedom. As shown
in [17], the bound gap,1H , can be expressed as a sum of local elemental positive contribu-
tions:1H =

∑
TH∈TH

1TH , with1TH ≥ 0. We can, therefore, implement a simple adaptive
strategy. Starting from an initial grid,T 0

H , with bound gap10
H , we generate a sequence of

triangulations{T k
H , k = 1, 2, . . .}with corresponding bound gaps{1k

H , k = 1, 2, . . .}, such
that each triangulationT k

H is obtained by refinement of the selected trianglesTk−1
H with

1k−1
TH

> αmaxTH 1
k−1
TH

, for a specified parameter 0< α < 1. The approach ensures that,
for a sufficiently largek,1k

H ≤ 1targ, where1targ> 0 is a gap target.
In practice, the refined mesh is obtained by dividing each selected triangle into four

self-similar triangles (1 : 4 division). The adjacent elements are divided into two elements

FIG. 4. Model problem. (a) Streamlines. (b) MeshT 0
H . (c) MeshT k1

H . (d) MeshT k2
H .
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TABLE I

Convergence of the Bounds for the Problem of Fig. 1a

TH T k1
H T k2

H TH/2

Number of elements 264 417 680 1056
s− 0.253 0.270 0.274 0.272
s+ 0.297 0.282 0.279 0.280
1H 0.0223 0.0058 0.0025 0.0037

if necessary to avoid any hanging nodes (1 : 2 division). To preserve shape regularity, we
do not allow the 1 : 2 divided elements to be divided at a subsequent level of refinement—
should further division be required, we first produce a 1 : 4 division of the original element,
and then proceed with the required subsequent divisions.

The effectiveness of the adaptive procedure is summarized in Table I, in whichT 0
H , T k1

H ,
andT k2

H denote successive adapted meshes corresponding to Figs. 4b, 4c, and 4d, respec-
tively; the meshTH/2 is auniform refinement ofT 0

H . Table I shows that a reduction of the
relative bound gap from 8% for meshT 0

H to less than 1% for meshT k2
H is achieved by opti-

mal refinement with a final mesh which contains only slightly more than twice the number
of elements of the meshT 0

H . Note that, for each of the adapted coarse meshes, the truth fine
mesh is obtained by dividing each element of the adapted coarse mesh into 62 elements,
implying that the truth mesh is also adapted; nevertheless, our choice of a conservative
initial fine mesh guarantees that the truth solution is insensitive to the adaptation of the fine
mesh.

4. ATTRIBUTES OF THE METHOD

We review here the four attributes of the method defined in the Introduction.

4.1. Attribute A1

To summarize the previous discussion, we have shown that bounds are obtained for all
mesh diametersH ≤ H∗, whereH∗ is an unknown threshold. Note that we expect the
singular perturbation prefactors, 1/α and 1/β (recall thatα andβ are the Prandtl and the
Grashof number, respectively), to unfortunately favor the indefinite terms; nevertheless,
the correspondingnumericalsingular perturbation parameter will be small as soon as the
coarse space even roughly resolves the structure of the solution, and thus the bound property
will be preserved except perhaps on very crude meshes.

We conclude that, even ifH∗ is not knowna priori, bounds are obtained once the solution
is marginally resolved. In numerical examples, we have always observed bounds, and thus
the uncertainty associated withH∗ is not an important practical issue, although it constitutes
a real theoretical issue. Note thatH∗ is a threshold parameter (bounds are obtained for all
H ≤ H∗); therefore, even ifH∗ is not known, the method presents a significant advantage
over previous explicita posterioriestimation procedures in which the estimators themselves
involved unknown constants and functions. Note also that, for linear coercive problems (and
the Stokes problem), bounds are obtained for anyH (H∗ = ∞) [13, 15, 17].

There is another source of uncertainty, namely, the choice of the fine meshTh, which
should be selected fine enough to ensure that|s− sh| is negligible (recall that s is the exact
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solution). In practice, the meshTh is chosen conservatively by estimatinga priori the size
of the smallest structures anticipated and by ensuring thatTh provides for an extremely
accurate representation of such structures. Note that the work to compute the bounds is not
overly sensitive to the fineness of the truth mesh (see Section 4.4).

4.2. Attribute A2

The bounds are sharp. As demonstrated by the numerical results, the bound gap converges
at an optimal rate; for sufficiently regular problems we have observed that1H ≤ C H4. The
effectivity factor,η = 1H/|sh − sH |, has also been measured and typically 1≤ η ≤ 10,
though this will be problem— and output—dependent.

4.3. Attribute A3

We have used the local decomposition of the bound gap into elemental positive contribu-
tions to implement an adaptive refinement strategy. We have shown that a straightforward
implementation yields a very efficient procedure which allows us to obtain an error for the
output below a specified threshold with an “optimal” (small) number of elements.

4.4. Attribute A4

We recall that (uh, ph, θh) andsh = S(uh, ph, θh) are the field variables and the output that
are effectively indistinguishable from the exact field solution and output and correspondingly
expensive. Our lower and upper bounds are only interesting if they can be obtained at a
considerably lower expense than the computation ofsh—and preferably at only a slightly
higher expense than the computation ofsH , the coarse approximation. From our definitions
of Yh and Ŷh, we see that Eqs. (22) and (23) correspond to many small, local, linear
Neumann subproblems, whereas Eq. (9) corresponds to a single large, global, nonlinear
problem. It follows that Eqs. (22) and (23) present a smaller bandwidth—yielding substantial
savings in both memory and computational time of direct solution strategies—and a smaller
condition number—yielding faster convergence in iterative methods. In addition, Eqs. (22)
and (23) are symmetric, positive semi-definite, and completely decoupled—the last making
straightforward parallel implementations possible. Furthermore, the dual problem, Eq. (17),
and the subproblems, Eqs. (22) and (23), are linear, leading to additional savings compared
to the original nonlinear fine-mesh problem. The relative savings are, of course, reduced as
the global solver improves.

APPENDIX 1. INCOMPRESSIBLE PROJECTION

Recall that(ũH , p̃H ) = (uH , pH )+ (∆h, δH ), where for allTH ∈ TH , we have(∆h|TH ,

δh|TH ) ∈ XTH × MTH , which satisfies

aTH (∆h|TH , v)+ bTH (v, δh|TH ) = 0, ∀v ∈ XTH , (27)

bTH (∆h|TH ,q) = −b(uH |TH ,q), ∀q ∈ MTH . (28)

This problem is solvable sinceb(uH |TH , 1) = b(uH , 1|TH ) = 0 for all TH ∈ TH .
Given anyTH ∈ TH , we first note that the inf-sup parameter,βTH , for Eqs. (27) and (28)

is independent ofh andH (βTH depends only on the shape ofTH and not on its size); the
latter follows from the scale invariance ofβTH when defined with respect to theH1(TH )

seminorm (which is equivalent to theH1(TH ) norm, as we have Dirichlet conditions on
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∂TH ). Therefore,∃v ∈ XTH such that

βTH |v|H1(TH )‖δh‖L2(TH ) ≤ |bTH (v, δh|TH )| = |aTH (∆h|TH , v)| ≤ |∆h|H1(TH )|v|H1(TH ),

and thus

‖δh‖L2(TH ) ≤
1

βTH

|∆h|H1(TH ).

We then note that

aTH (∆h,∆h) = |∆h|2H1(TH )
= −bTH (∆h, δh) = b(uH |TH , δh)

= −b(uh|TH − uH |TH , δh)

≤ C|uh − uH |H1(TH )‖δh‖L2(TH )

≤ C

βTH

|uh − uH |H1(TH )|∆h|H1(TH ).

Therefore, we have, for allTH ∈ TH ,

|∆h|H1(TH ) ≤
C

βTH

|uh − uH |H1(TH );

moreover, since∆h|∂TH = 0, we can apply the Poincar´e inequality in conjunction with a
scaling argument to find

‖∆h‖L2(TH ) ≤
C

βTH

H |uh − uH |H1(TH ).

Finally, squaring and summing over allTH ∈ TH yields the estimates

|ũH − uH |H1(Ä) ≤ C|uh − uH |H1(Ä),

‖ũH − uH‖L2(Ä) ≤ C H|uh − uH |H1(Ä).

The procedure for (̃ψH , λ̃H ) is identical except that the right-hand side in Eq. (28) is now
−b(ψH | TH ,q)− L((uH , pH , θ̃ H ); (0,q, 0)). If we denote the adjoint obtained on the fine
mesh byψh, then we have

b(ψh|TH
,q) = −L((uH , pH , θ̃ H ); (0,q, 0)), ∀q ∈ MTH ;

therefore,

aTH (∆h,∆h) = −bTH (ψh −ψH , δh),

and the rest of the proof follows. We thus obtain the estimates

|ψ̃H −ψH | H1(Ä) ≤ C |ψh −ψH |H1(Ä),

‖ψ̃H −ψH‖L2(Ä) ≤ C H|ψh −ψH |H1(Ä).
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APPENDIX 2. SOLVABILITY OF THE LOCAL NEUMANN SUBPROBLEMS

To ensure solvability of Eqs. (22) and (23), we must prove

Rpr((ũH , p̃H , θ̃ H ); (vs,qs, φs)) = B((vs, φs), (z, zθ )pr)

and

Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (vs,qs, φs)) = B((vs, φs), (z, zθ )du),

for all the singular modes(vs,qs, φs) ∈ Ŷh defined by

E0((w, r, ρ), (vs,qs, φs)) = 0, ∀(w, r, ρ) ∈ Ŷh.

The velocity singular modes arevs = (1|TH , 0), (0, 1|TH ), (y|TH ,−x|TH ), for all TH ∈ TH ,
corresponding respectively to (elemental) translations in thex direction, translations in the
y direction, and rotations. We also have the temperature modesφs = 1|TH and the pressure
modesqs = 1|TH . Since all these modes are inŶH , in view of Eqs. (18) and (19), we have
to prove that

Rpr((ũH , p̃H , θ̃ H ); (vs,qs, φs)) = Rpr((uH , pH , θH ); (vs,qs, φs)) (29)

and

Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (vs,qs, φs))

= Rdu((uH , pH , θH ); (ψH , λH , µH ); (ψH , µH ); (vs,qs, φs)). (30)

Looking first at Eq. (29), by the definition ofRpr in Eq. (14),

Rpr((ũH , p̃H , θ̃ H ); (vs, 0, 0)) = −a(ũH , vs)− b(vs, p̃H )− c(ũH , ũH , vs)− d(θ̃ H , vs)

= −c(ũH , ũH , vs)− d(θ̃ H , vs).

Using the definition ofc (note the importance of the conservative form), and since the
support ofvs is an elementTH ∈ TH , we can write

c(ũH , ũH , vs) = −
∫

TH

ũHi ũH j
∂vs

i

∂xj
dÄ = −1

2

∫
TH

ũHi ũH j

(
∂vs

i

∂xj
+ ∂v

s
j

∂xi

)
dÄ = 0,

and since the same argument applies toc(uH , uH , vs) andθ̃ H = θH , we have

Rpr((ũH , p̃H , θ̃ H ); (vs, 0, 0)) = Rpr((uH , pH , θH ); (vs, 0, 0)).

We now consider

Rpr((ũH , p̃H , θ̃ H ); (0, 0, φs)) = −aθ (θ̃ H , φ
s)− cθ (θ̃ H , ũH , φ

s)− 〈gN, φ
s〉N

= −〈gN, φ
s〉N

= Rpr((uH , pH , θH ); (0, 0, φs)).
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Then, since forqs = 1|TH ,

Rpr((ũH , p̃H , θ̃ H ); (0,qs, 0)) = 0= Rpr((uH , pH , θH ); (0,qs, 0)),

Eq. (29) is satisfied.
Turning now to the dual problem, the definition ofRdu, Eq. (15), gives

Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (vs,qs, φs))

= −L((uH , pH , θH ); (vs,qs, φs))− a(ψ̃H , vs)− aθ (µ̃h, φ
s)

−E1((uH , θH ); (vs, φs), (ψH , µH )).

Sincea(ψ̃H , vs) = 0 anda(ψH , v
s) = 0, and sinceaθ (µ̃h, φ

s) = 0 andaθ (µh, φ
s) = 0,

Eq. (30) is satisfied. Note that, thanks to our definition of the generalized dual residual, Eq.
(15), the last argument ofE1 is (ψH , µH ) and not (ψ̃H , µ̃H ) in the above expression; this
is essential to ensure the solvability of the dual subproblems.

APPENDIX 3. BOUND ERROR EXPRESSION

We define the errors̃e= uh − ũH , ε̃ = ph − p̃H , andẽθ = θh − θ̃ H . We note that, since
(ẽ, ε̃, ẽθ ) ∈ Yh,

B((ẽ, ẽθ ), (z, zθ )pr) = 0 and B((ẽ, ẽθ ), (z, zθ )du) = 0.

Therefore, from Eqs. (22) and (23), and from the definition of the formE0, Eq. (12), we
have

2E0((ê, ε̂, 0)pr, (ẽ, ε̃, 0)) = Rpr((ũH , p̃H , θ̃ H ); (ẽ, ε̃, 0)), (31)

2E0((0, 0, êθ )pr, (0, 0, ẽθ )) = Rpr((ũH , p̃H , θ̃ H ); (0, 0, ẽθ )), (32)

and similarly

2E0((ê, ε̂, êθ )du, (ẽ, ε̃, ẽθ )) = Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (ẽ, ε̃, ẽθ )).
(33)

Then, using Eq. (25), we combine Eqs. (31), (32), and (33) to write

2κuE0((ê±, ε̂±, 0), (ẽ, ε̃, 0))+ 2κθE0((0, 0, êθ±), (0, 0, ẽθ ))

= κuRpr((ũH , p̃H , θ̃ H ); (ẽ, ε̃, 0))+ κθRpr((ũH , p̃H , θ̃ H ); (0, 0, ẽθ ))
∓Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (ẽ, ε̃, ẽθ )). (34)

We will now expand the right-hand side of Eq. (34). Using Eq. (16) and the expansion,
Eq. (11), one can write

κuRpr((ũH , p̃H , θ̃ H ); (ẽ, ε̃, 0)) = κuE0((ẽ, ε̃, ẽθ ), (ẽ, ε̃, 0))

+ κuE1((ũH , θ̃ H ); (ẽ, ẽθ ), (ẽ, 0))+ κuF((ẽ, ẽθ ), (ẽ, ẽθ ), (ẽ, 0)) (35)
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and

κθRpr((ũH , p̃H , θ̃ H ); (0, 0, ẽθ )) = κθE0((ẽ, ε̃, ẽθ ), (0, 0, ẽθ ))

+ κθE1((ũH , θ̃ H ); (ẽ, ẽθ ), (0, ẽθ ))+ κθ F((ẽ, ẽθ ), (ẽ, ẽθ )(0, ẽθ )). (36)

From the definition of the dual residual, Eq. (15), we also have

Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (ẽ, ε̃, ẽθ ))
= −L((uH , pH , θH ); (ẽ, ε̃, ẽθ ))− E0((ẽ, ε̃, ẽθ ), (ψ̃H , λ̃H , µ̃H ))

− E1((uH , θH ); (ẽ, ε̃), (ψH , µH )),

which, by virtue of Eqs. (16) and (11), can be rewritten as

Rdu((uH , pH , θH ); (ψ̃H , λ̃H , µ̃H ); (ψH , µH ); (ẽ, ε̃, ẽθ ))
= −L((ũH , p̃H , θ̃ H ); (ẽ, ε̃, ẽθ ))−Rpr((ũH , p̃H , θ̃ H ); (ψ̃H , λ̃H , µ̃H ))

+ F((ẽ, ẽθ ), (ẽ, ẽθ ), (ψ̃H , µ̃H ))+ [E1((ũH , θ̃ H ); (ẽ, ẽθ ), (ψ̃H , µ̃H ))

− E1((uH , θH ); (ẽ, ẽθ ), (ψH , µH ))] + [L((ũH , p̃H , θ̃ H ); (ẽ, ε̃, ẽθ ))
− L((uH , pH , θH ); (ẽ, ε̃, ẽθ ))]. (37)

Now, combining Eqs. (34)–(37), we write

0 = ∓2κuE0((ê±, ε̂±, 0), (ẽ, ε̃, 0))∓ 2κθE0((0, 0, êθ±), (0, 0, ẽθ ))

± κuE0((ẽ, ε̃, ẽθ ), (ẽ, ε̃, 0))± κuE1((ũH , θ̃ H ); (ẽ, ẽθ ), (ẽ, 0))
± κθE0((ẽ, ε̃, ẽθ ), (0, 0, ẽθ ))± κθE1((ũH , θ̃ H ); (ẽ, ẽθ ), (0, ẽθ ))
± κuF((ẽ, ẽθ ), (ẽ, ẽθ ), (ẽ, 0))± κθ F((ẽ, ẽθ ), (ẽ, ẽθ ), (0, ẽθ ))

+ L((ũH , p̃H , θ̃ H ); (ẽ, ε̃, ẽθ ))+Rpr((ũH , p̃H , θ̃ H ); (ψ̃H , λ̃H , µ̃H ))

− F((ẽ, ẽθ ), (ẽ, ẽθ ), (ψ̃H , µ̃H ))− [E1((ũH , θ̃ H ); (ẽ, ẽθ ), (ψ̃H , µ̃H ))

− E1((uH , θH ); (ẽ, ẽθ ), (ψH , µH ))] − [L((ũH , p̃H , θ̃ H ); (ẽ, ε̃, ẽθ ))
−L((uH , pH , θH ); (ẽ, ε̃, ẽθ ))]. (38)

If we add Eq. (38) to the bound equation, Eq. (24), noting that

E0((ẽ, ε̃, ẽθ ), (ẽ, ε̃, 0)) = E0((ẽ, ε̃, 0), (ẽ, ε̃, 0)),

E0((ẽ, ε̃, ẽθ ), (0, 0, ẽθ )) = E0((0, 0, ẽθ )), (0, 0, ẽθ )),

we find the bound error expression

s±H = sh ± D± + I ±,

where

D± = κuF0(ẽ− ê±, ε̃ − ε̂±, 0)+ κθF0(0, 0, ẽθ − êθ )
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and I ± =∑6
j=1 I ±j . In these expressions,F0(v,q, φ) = E0((v,q, φ), (v,q, φ)) and

I ±1 = −F((ẽ, ẽθ ), (ẽ, ẽθ ), (ψ̃H , µ̃H )),

I ±2 = ±κuE1((ũH , θ̃ H ); (ẽ, ẽθ ), (ẽ, 0))± κθE1((ũH , θ̃ H ); (ẽ, ẽθ ), (0, ẽθ )),
I ±3 = ±κuF((ẽ, ẽθ ), (ẽ, ẽθ ), (ẽ, 0))± κθ F((ẽ, ẽθ ), (ẽ, ẽθ ), (0, ẽθ )),

I ±4 = −M(ẽ, ẽ),

I ±5 = E1((uH , θH ); (ẽ, ẽθ ), (ψH , µH ))− E1((ũH , θ̃ H ); (ẽ, ẽθ ), (ψ̃H , µ̃H )),

I ±6 = L((uH , pH , θH ); (ẽ, ε̃, ẽθ ))− L((ũH , p̃H , θ̃ H ); (ẽ, ε̃, ẽθ )).

APPENDIX 4. CONVERGENCE OF THE INDEFINITE TERMS

We give here explicit expressions for the indefinite terms,I1,...,6, defined in Appendix 3,

|I ±1 | =
∣∣∣∣ ∫

Ä

ẽi ẽj
∂ψ̃Hi

∂xj
dÄ+

∫
Ä

ẽθ ẽj
∂µ̃H

∂xj
dÄ

∣∣∣∣,
|I ±2 | =

∣∣∣∣κu

[ ∫
Ä

ũHi ẽj
∂ẽi

∂xj
dÄ+

∫
Ä

ẽi ũHj

∂ẽi

∂xj
dÄ

]

+ κθ
[ ∫

Ä

θ̃ H ẽj
∂ẽθ

∂xj
dÄ+

∫
Ä

ẽθ ũHj

∂ẽθ

∂xj
dÄ

]
− βκu

∫
Ä

ĝi ẽi ẽ
θdÄ

∣∣∣∣,
|I ±3 | =

∣∣∣∣κu
∫
Ä

ẽi ẽj
∂ẽi

∂xj
dÄ+ κθ

∫
Ä

ẽθ ẽj
∂ẽθ

∂xj
dÄ

∣∣∣∣ ,
|I ±4 | = |m(ẽ, ẽ)|,

|I ±5 | =
∣∣∣∣∫
Ä

uHi ẽj
∂ψHi

∂xj
dÄ+

∫
Ä

ẽi uH j
∂ψHi

∂xj
dÄ+

∫
Ä

θH ẽj
∂µH

∂xj
dÄ

+
∫
Ä

ẽθuH j
∂µH

∂xj
dÄ−

∫
Ä

ũHi ẽj
∂ψ̃Hi

∂xj
dÄ−

∫
Ä

ẽi ũH j
∂ψ̃Hi

∂xj
dÄ

−
∫
Ä

θ̃ H ẽj
∂µ̃H

∂xj
dÄ−

∫
Ä

ẽθ ũH j
∂µ̃H

∂xj
dÄ− β

∫
Ä

ẽθ (ψHi − ψ̃Hi )ĝi dÄ

∣∣∣∣,
|I ±6 | = 2|m(uH − ũH , ẽ)|.

We also note that

|ẽ|H1(Ä) = |uh − ũH |H1(Ä)

≤ |uh − uH |H1(Ä) + |uH − ũH |H1(Ä)

≤ C|uh − uH |H1(Ä) ≤ C H2;

the last line follows form standarda priori estimates assuming thatu ∈ H3(Ä)× H3(Ä).
Similarly, we have

‖ẽ‖L2(Ä) ≤ ‖uh − uH‖L2(Ä) + C H|uh − uH |H1(Ä) ≤ C H3,

from the standard Aubin–Nitsche estimate. This result is directly useful to prove, for
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instance, that, in termI ±6 ,

|m(uH − ũH , ẽ)| ≤ C‖uH − ũH‖L2(Ä)‖ẽ‖L2(Ä) ≤ C H6.

We will now estimate the convergence rates of two other (representative) selected terms in∑6
i=1 |I ±i |. The convergence rates of the remaining terms are obtained by similar arguments.
We first consider a term in|I ±1 |,∣∣∣∣∫

Ä

ẽi ẽj
∂ψ̃Hi

∂xj
dÄ

∣∣∣∣ ≤ ∣∣∣∣∫
Ä

ẽi ẽj
∂(ψ̃Hi − ψi )

∂xj
dÄ

∣∣∣∣+ ∣∣∣∣∫
Ä

ẽi ẽj
∂ψi

∂xj
dÄ

∣∣∣∣ ,
≤ ‖ẽ‖L4(Ä)‖ẽ‖L4(Ä)‖∇(ψ̃H −ψ)‖L2(Ä)

+‖ẽ‖L2(Ä)‖ẽ‖L4(Ä)‖∇ψ‖L4(Ä),

where we have used the Cauchy–Schwartz inequality. By virtue of the Sobolev inequality,
‖v‖L4(Ä) ≤ C‖v‖H1(Ä), ∀v ∈ H1(Ä) (e.g., see [1]), we now write∣∣∣∣∫
Ä

ẽi ẽj
∂ψ̃Hi

∂xj
dÄ

∣∣∣∣ ≤ C1‖ẽ‖H1(Ä)‖ẽ‖H1(Ä)|ψ̃H −ψ|H1(Ä) + C2‖ẽ‖L2(Ä)‖ẽ‖H1(Ä)‖ψ‖H2(Ä)

≤ C1H6+ C2H5,

where we have exploited our previous estimates; hereC1 andC2 denote two generic positive
constants independent ofH, and we have assumedu,ψ ∈ H3(Ä)× H3(Ä).

For our second example, we rewriteI ±5 as

∣∣I ±5 | = ∣∣∣∣∫
Ä

(uHi − ũHi )ẽj
∂ψHi

∂xj
dÄ+

∫
Ä

ũHi ẽj
∂(ψHi − ψ̃Hi )

∂xj
dÄ

+
∫
Ä

ẽi (uH j − ũH j )
∂ψHi

∂xj
dÄ+

∫
Ä

ẽi ũH j
∂(ψHi − ψ̃Hi )

∂xj
dÄ

+
∫
Ä

eθ (uH j − ũH j )
∂µH

∂xj
dÄ− β

∫
Ä

ẽθ (ψHi − ψ̃Hi )ĝi dÄ

∣∣∣∣ ,
and we consider, for instance,∣∣∣∣∫

Ä

(ũHi − uHi )ẽj
∂ψHi

∂xj
dÄ

∣∣∣∣ ≤ ∣∣∣∣∫
Ä

(ũHi − uHi )ẽj
∂ψi

∂xj
dÄ

∣∣∣∣
+
∣∣∣∣∫
Ä

(ũHi − uHi )ẽj
∂(ψ̃Hi − ψi )

∂xj
dÄ

∣∣∣∣
≤ C1‖ẽ‖L2(Ä)‖uH − ũH‖L4(Ä)‖∇ψ‖L4(Ä)

+C2‖ψ̃H −ψ‖H1(Ä)‖ẽ‖L4(Ä)‖ũH − uH‖L4(Ä)

≤ C1‖ẽ‖L2(Ä)‖uH − ũH‖H1(Ä)‖ψ‖H2(Ä)

+C2‖ψ̃H −ψ‖H1(Ä)‖ẽ‖H1(Ä)‖ũH − uH‖H4(Ä)

≤ C1H5+ C2H6,

where the second inequality follows from the application of the Cauchy–Schwartz inequal-
ity. In the third inequality, we have again used the standard Sobolev inequality‖v‖L4(Ä) ≤
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C‖v‖H1(Ä) for all v ∈ H1(Ä). The last inequality is a direct consequence of our previous
estimates.

ACKNOWLEDGMENTS

This work was supported by NASA Grants NAG1-1978, NAG1-1587, and NAG4-105, DARPA and ONR
Grant N00014-91-J-1-1889, and AFOSR Grant F49620-97-1-0052. L.M. was partially supported by Fulbright,
BAEF, and NATO Fellowships. We acknowledge our longstanding and very fruitful collaboration with Professor
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(1999).

12. J. Mandel and M. Brezina,Balancing Domain Decomposition: Theory and Performance in Two and Three Di-
mensions, Technical report, Center for Computational Mathematics (University of Colorado at Denver, 1993).

13. M. Paraschivoiu and A. T. Patera, A hierarchical duality approach to bounds for the outputs of partial
differential equation,Comput. Methods. Appl. Mech. Eng. 158, 389 (1998).

14. M. Paraschiviou and A. T. Patera, A posteriori bounds for linear-functional outputs of Crouzeix–Raviart finite
element discretizations of the incompressible Stokes problem,Int. J. Numer. Methods Fluids32, 823 (2000).

15. M. Paraschivoiu, J. Peraire, and A. T. Patera, A posteriori finite element bounds for linear-functional outputs
of elliptic partial differential equations,Comput. Methods Appl. Mech. Eng. 150, 289 (1997).

16. A. T. Patera and E. M. Ronquist, A general output bound result: Application to discretization and iteration
error estimation and control,Math. Models Methods Appl. Sci. 11(4), 685 (2001).

17. J. Peraire and A. T. Patera, Bounds for linear-functional outputs of coercive partial differential equations:
Local indictors and adaptive refinement, inOn New Advances in Adaptive Computational Methods in
Mechanics, edited by P. Ladeveze and J. T. Oden (Elsevier Science Ltd., Oxford, 1998).


	1. INTRODUCTION AND MOTIVATION
	FIG. 1.

	2. BOUND PROCEDURE
	3. NUMERICAL EXAMPLES
	FIG. 2.
	FIG. 3.
	FIG. 4.
	TABLE I

	4. ATTRIBUTES OF THE METHOD
	APPENDIX 1. INCOMPRESSIBLE PROJECTION
	APPENDIX 2. SOLVABILITY OF THE LOCAL NEUMANN SUBPROBLEMS
	APPENDIX 3. BOUND ERROR EXPRESSION
	APPENDIX 4. CONVERGENCE OF THE INDEFINITE TERMS
	ACKNOWLEDGMENTS
	REFERENCES

